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Recent progress in Machine Learning is great, but . . .

Current Machine Learning (ML) is often driven by large amounts of low quality internet data, yielding large, computationally expensive,
black box models that provide little insight into the problem. When directly applied to Scientific Domains, such methods . . .

Big Data

. . . require a large amount of
data to converge to a good
solution. In many scientific
domains only little data is
available yielding to overfitting
and unsatisfactory results.

Black Box Solutions

. . . provide black box solutions
and therefore do not create new
scientific hypothesis. But
without the latter, ML only adds
little value to the scientific
domain research.

Ignores Scientific Knowledge

. . . ignore existing prior
knowledge in the domain and
learn everything from scratch
often resulting in solutions that
violate common knowledge.

To address these problems . . .

1 Encode Prior Knowledge in a (Bayesian) Graph
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◦ computational graphs [6] represent prior knowledge
and relations between variables in computational
tasks

◦ a factor graph [4] notation allows probabilities
(=factors ϕi) for variables as well as knowledge like

◦ equations and auxiliary variables [1]
◦ differential equations [3]
◦ structural priors (with grammars) [9]

◦ Example: 1D Lake Temperature Model

Task: find the unknown function f (x ,d) = T

AND

"I know that temperature T is related to density ρ
via g and the density monotony h holds with

increasing depth d ." (compare [1])

2 Input Additional Data Evidence

◦ measurements or observations
for certain variables in the graph

3 Output Symbolic Solution Candidates
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◦ for the unknown functions in
the graph

◦ composes complex
expressions out of a library
of known operations

◦ yields a scientific
hypothesis that can be
interpreted and debated

◦ can be found with Bayesian
Symbolic Regression (BSR)
[2] by performing MCMC
steps in the space of
symbolic representations.

Proposed Framework: Symbolic Computational Graph Completion

Bayesian Symbolic Regression (BSR) Solver

MCMC Step

Involutive
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Figure: Overview of the proposed framework for Symbolic Computational Graph Completions

Our Approach

◦ Encode the problem as well as all prior knowledge in a
computational (factor) graph representation.

◦ Fill in symbolic solutions with data and Bayesian Reasoning.

Scientific Knowledge Exploitation
Hereby, the framework considers three steps that exploit the prior
knowledge in the graph:

(1) Unnormalized Posterior:
use the graph to evaluate the unnormalized posterior distribution of
potential symbolic expressions in order to sample from it using
MCMC (see [2])

(2) Informed Sampler:
involutive maps [5] encode additional information about the
problem to design informed samplers that produce samples of high
likelihood. Especially learned maps [8] allow a connection to recent
advances in deep learning (e.g. [7]).

(3) Graph Update:
The Bayesian solver yields symbolic hypothesis that enables a
human researcher to
◦ accept one of the hypothesis / candidates or
◦ come up with new prior knowledge in the graph
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