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Hyperelastic material models are widely used to represent nonlinear be-

havior of engineeringmaterials, such as rubber and foam. Thesemodels

are equipped with a hyperelastic potential W, which needs to obey cer-

tain constraints to be physically meaningful. Recently, the consideration

of such constraints, e.g. material symmetry, in machine-learned hypere-

lastic potentials has become an active field of research and the different

methodologies available in the literature shall be investigated within the

framework of this project.

Motivation
Established principles from materials modeling can be translated into

basic invariant and equivariant operations, commonly found in machine

learning. For example, objectivity and material symmetry transforma-

tions may be perceived as:

0 Invariant operations on W(F)
Objectivity → W(F) = W(QF) ∀Q ∈ SO(3) (1)

Symmetry → W(F) = W(FG) ∀G ∈ G ⊆ SO(3) (2)

0 Equivariant operations on P(F) = DFW(F))
Obejctivity → P(QF) = QP(F) ∀Q ∈ SO(3) (3)

Symmetry → P(FG) = P(F)G ∀G ∈ G ⊆ SO(3) (4)

The fulfillment of such transformations, either in an exact or approxi-

mated fashion, by a machine-learned hyperelastic potential WML(F) is of
upmost interest in this project.

Research Questions
0 How to efficiently incorporate physical constraints in the

machine-learning model?

0 How does the fulfillment of such constraints influence model

accuracy?

0 Does such fulfillment enable improvement of model features?

0 How do the input and output features correlate?

Methods
0 Data augmentation, penalty methods and dedicated

machine-learning architectures are options to apply physical

constraints in a machine-learning model

Applications
0 Multiscale simulations can benefit from machine-learning models

due to fast inference and evaluation, but are they still physically

meaningful?

0 Multi-parametric dependencies, e.g., additional geometry and

material parameters

State-of-the-art
Group Symmetrization [1]

WML(F) = 1

#(G)
∑

G∈G

W0(FG),

where #(G) is the number of symmetry transformations in the corre-

sponding symmetry group G.

Constitutive Artificial Neural Networks (CANNs) [2]

Figure from [2]
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